On Two Types of Slightly Countable Dense Homogeneous Spaces

by

Samer Al Ghour

Department of Mathematics and Statistics Jordan University of Science and Technology, Irbid 22110, Jordan E-mail: algore@just.edu.jo

Part I

Definition: [1] A space (X, τ) is homogeneous if for any two points $x, y \in X$ there exists a homeomorphism $f : (X, \tau) \to (X, \tau)$ such that f(x) = y.

Part II

Definition: [2] A space (X, τ) is countable dense homogeneous (abbreviated: CDH) if it is separable space and for any two countable dense subsets A, B of X, there is a homeomorphism $f: (X, \tau) \to (X, \tau)$ such that f(A) = B.

Part III

Definition: [7] A function $f:(X,\tau_1) \rightarrow (Y,\tau_2)$ is *slightly continuous* if the inverse image of every clopen subset of (Y,τ_2) is a clopen subset of (X,τ_1) .

Part IV

Definition: [8] A function $f:(X,\tau_1) \rightarrow (Y,\tau_2)$ is *slight homeomorphism* if f is a bijection and f and f^{-1} are slightly

continuous.

$\mathbf{Part}~\mathbf{V}$

Definition. [8] A space (X, τ) is said to be *slightly homogeneous* if for any two points $x, y \in X$, there exists a slight homeomorphism $f: (X, \tau) \to (X, \tau)$ such that f(x) = y. A subset of a space (X, τ) , which has the form $SC_x = \{y \in X : \text{there is} \}$ a slight homeomorphism $f: (X, \tau) \to (X, \tau)$ such that f(x) = y is called the slightly homogeneous component of X at x.

Part VI

Definition. [8] A separable space (X, τ) is said to be *slightly* countable dense homogeneous (abbreviated: SCDH) if given any two countable dense subsets A, B of X, there is a slight **homeomorphism** $f: (X, \tau) \to (X, \tau)$ such that f(A) = B.

Part VII

Theorem [8] Let U be a non-empty clopen subset of a space (X, τ) . If SC_x is a slightly homogeneous component of $x \in X$ and $U \subseteq SC_x$, then SC_x is open in X. Theorem (a) [8] Every CDH space is SCDH but not conversely.

(b) [4] Every zero dimensional SCDH space is CDH.

Part VIII

Definition Let (X, τ) be a space. A subset $A \subseteq X$ is said to be *slightly dense* if for every non-empty clopen set $U \subseteq X$, $U \cap A \neq \emptyset$.

Part IX

Remark. Dense subsets of a space

 (X,τ) are slightly dense.

Part X

Example. Consider the space $((0,1) \cup (2,3), \tau_u)$ and $D = \{\frac{1}{2}, \frac{5}{2}\}$. D is a slightly dense set that is not

dense.

Part XI

Theorem. Let (X, τ) be a zero dimensional space and let $D \subseteq X$. Then D is dense in X iff it is slightly dense in X.

Part XII

Theorem. Let (X, τ) be a space such that for some $x \in X$, SC_x is not open. Then $X - SC_x$ is slightly dense in (X, τ) .

Part XIII

Definition. For every finite non zero cardinal number n, denote the set $\{A \subseteq X : A \text{ is slightly dense and} |A| = n\}$ by C_n , and denote the set $\{A \subseteq X : A \text{ is slightly dense and} |A| = \aleph_0\}$ by C_∞ . Theorem. Let (X,τ) be a space. Then the following are equivalent.

(i) (X,τ) is connected.

(ii) *A* is slightly dense for all non-empty set $A \subseteq X$.

(iii) ${x}$ is slightly dense for all $x \in X$. (iv) $C_1 \neq \emptyset$.

Part XIV

Theorem. Let (X, τ) be a disconnected space. If for some non-zero finite cardinal number n, $C_n = \{A \subseteq X : |A| = n\}$, then $|X| \le 2n - 2$.

Part XV

Corollary. If X is a set with |X| > 2and τ is a topology on X, then (X, τ) is connected iff $C_2 = \{A \subseteq X : |A| = 2\}.$

Part XVI

Corollary. Let (X, τ) be a space such that |X| > 2n - 2 where n is a non-zero finite cardinal number. If $C_n = \{A \subseteq X : |A| = n\}$, then (X, τ) is connected.

Part XVII

Definition. A space (X, τ) is said to be slightly separable if it contains a countable slightly dense subset. Remarks. 1. A space (X,τ) is slightly separable iff $C_n \neq \emptyset$ for some $n \in \mathbb{N} \cup \{\infty\}$.

2. Every connected space is slightly separable but not conversely.

3. Every separable space is slightly separable but not conversely.

4. A zero dimensional space is separable iff it is slightly separable space.

5. The slightly continuous image of a slightly separable space is slightly separable.

Part XVIII

Theorem. A clopen subspace of a slightly separable space is slightly separable.

Part XIX

Definition. [12] Let

 $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be a collection of

spaces such that $X_{\alpha} \cap X_{\beta} = \emptyset$ for all

$$\alpha \neq \beta$$
. Let $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ be

topologized by $\{U \subseteq X : U \cap X_{\alpha} \in \tau_{\alpha}\}$

for all $\alpha \in \Lambda$. Then (X, τ) is called

the disjoint sum of the spaces

 $(X_{\alpha}, \tau_{\alpha}), \alpha \in \Lambda$.

Part XX

Theorem. Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be a family of spaces with $X_{\gamma} \cap X_{\beta} = \emptyset$ for $\gamma \neq \beta$. If for all $\alpha \in \Lambda$, $(X_{\alpha}, \tau_{\alpha})$ contains a non-empty slightly dense set D_{α} , then $\bigcup_{\alpha \in \Lambda} D_{\alpha}$ is slightly dense in the disjoint sum space $(\bigcup X_{\alpha}, \tau_d)$.

 $\alpha \in \Lambda$

Part XXI

Definition. A space (X, τ) is said to be slightly countable dense homogeneous of type (2)(SCDH(2)) if (X, τ) is slightly separable and for any two countable slightly dense sets A and B in X, there exists a slight **homeomorphism** $h: (X, \tau) \to (X, \tau)$ such that h(A) = B.

Part XXII

Theorem. If (X, τ) is SCDH(2), then every slightly dense subset of X different from X is infinite.

Part XXIII

Corollary. Let (X, τ) be a connected space. Then (X, τ) is SCDH(2) iff |X| = 1.

Part XXIV

Example. (\mathbb{R}, τ_u) is a CDH space

that is not SCDH(2).

Part XXV

Theorem. A zero dimensional space is CDH iff it is SCDH(2).

Part XXVI

Example. The space (\mathbb{Q}^c, τ_u) is SCDH(2).

Part XXVII

Theorem. Let (X, τ) be a SCDH(2) space. Then X is countable iff

 $\tau = \tau_{disc}$.

Part XXVIII

Example. The space (\mathbb{Q}, τ_u) is not SCDH(2).

Part XXIX

Theorem. A zero dimensional space (X, τ) is SCDH(2) iff it is SCDH.

Part XXX

Theorem. Let $\{(X_n, \tau_n) : n \in \mathbb{N}\}$ be a family of SCDH(2) spaces with $X_n \cap X_m = \emptyset$ for $n \neq m$. Then the disjoint sum space $(\bigcup_{n=1}^{\infty} X_n, \tau_d)$ is SCDH(2).

Part XXXI

Definition. A space (X, τ) is said to be slightly countable dense homogeneous of type (3)(SCDH(3)) if (X, τ) is slightly separable and for each $n \in \mathbb{N} \cup \{\infty\}$ and $A, B \in C_n$, there exists a slight **homeomorphism** $f: (X, \tau) \to (X, \tau)$ such that f(A) = B.

Part XXXII

Theorem. Every connected space is SCDH(3).

Part XXXIII

Theorem. Every SCDH(2) space is SCDH(3).

Part XXXIV

Example. (\mathbb{R}, τ_u) is SCDH(3) but not SCDH(2).

Part XXXV

Theorem. Every zero dimensional CDH space is SCDH(3).

Part XXXVI

Theorem. Let (X, τ) be a space such that all slightly dense sets in X have the same cardinality, then (X, τ) is SCDH(2) iff it is SCDH(3).

References

 W. Sierpenski, Sur uni proprit'te' topologique des ensembles de'nombrable dense en soi. Fund. Math 1 (1920), 11-28.

[2] R. Bennett, Countable dense homogeneous spaces. Fund. Math. 74 (1972), 189–194.

[3] A. V. Arhangel'skii and J. van Mill, On the cardinality of countable dense homogeneous spaces. Proc. Amer. Math. Soc. **141** (2013), 4031–4038.

 [4] R. Hernandez-Gutiérrez and M. Hrušak, Non-meager P-filters are countable dense homogeneous. Colloq. Math. 130 (2013), 281–289.

[5] M. Hrusak and J. van Mill, Nearly countable dense homogeneous spaces. Canad.J. Math. 66 (2014), 743–758.

[6] D. Repovš, L. Zdomskyy and S. Zhang, *Countable dense homogeneous filters* and the Menger covering property. Fund. Math. **224** (2014), 233–240.

[7] A. R. Singal and R. C. Jain, *Slightly continuous mappings*. J. Indian Math.Soc. (N.S.) 64 (1997), 195–203.

[8] S. Al Ghour and N. Al Khatib, On slight homogeneous and countable dense homogeneous spaces. Mat. Vesnik **63** (2011), 133–144.

[9] S. Al Ghour, *Minimality and prehomogeneity*. Acta Math. Univ. Comenian 72 (2003), 237-244.

[10] S. Al Ghour, Components and local prehomogeneity. Acta Math. Univ.Comenian. (N.S.) 73 (2004), 187–196.

[11] S. Al Ghour, K. Zoubi and A. Fora, Semihomogeneous topological spaces.

Publ. Math. Debrecen 67 (2005), 131-142.

[12] R. Engelking, General Topology, Hilderman-Berlin, 1989.

[13] M. Yassien, Homogeneous spaces. Master Thesis, Department of Mathemat-

ics, Yarmouk University, Irbid-Jordan, 1995.